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Abstract

A wide variety of natural and laboratory systems can produce pat-
terns of ripples, hexagons, or squares. The formation of stable square
patterns from partial differential equation models requires very special
cubic nonlinearities. Motivated by plant phyllotaxis, we propose how
the coupling of more than one pattern-forming system can produce
square patterns without these special nonlinearities.
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1 Introduction: Lattice patterns in natural and
laboratory systems

Patterns of ripples (Fig. 1 (a)) or hexagons (Fig. 1 (b)) are observed in
a wide variety of natural and laboratory systems. Ripples dominant the
surface, for example, of the saguaro cactus shown in Fig. 2 (a). They
appear as stripes on zebras, on sandy beaches, and in cloud formations.
Hexagons, on the other hand, are evident in the surface morphology of
the cactus of Fig. 2 (b). Both ripples and hexagons may be observed in
Raleigh-Bènard convection experiments [5], the Rosenzweig instability in
ferrofluids [9], nanoscale structures formed by bombarding a binary material
by a broad ion beam [1, 2, 4, 23], and geological formations [14]. Different
physical, chemical, or biological mechanisms are at play in these systems,
yet remarkably similar patterns form.



Figure 1: Gray-scale plots of u(x, y, t) at time t = 10000 resulting from
numerical simulations of Eq. (1). The parameter values are P = 1.1,
γ = 10, and (a) β = 0, δ = 0, (b) β = 2, δ = 0, (c) β = 0, δ = 1. The
spatial domain is −60 ≤ x, y ≤ 60.
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Figure 2: Cacti displaying planforms of (a) ripples, (b) hexagons, and (c)
squares.

Fig. 1 shows patterns that result from numerical simulations of the
Swift-Hohenberg equation [25]

∂u

∂t
= αu− 2P∇2u−∇4u+N(u), (1)

where N(u), a nonlinear function of u, is chosen to be

N(u) = βu2 + γu3 + δ∇ · (|∇u|2∇u).

Depending on choices of coefficients for the nonlinear terms, the surface
u(x, y, ·) reaches a steady state that is a pattern of ripples (Fig 1 (a)),
hexagons (Fig 1 (b)), or squares (Fig 1 (c)).

The steady-state solutions are approximately given by the sum of only
a few Fourier modes. That is, for the case of ripples,

u(x, y, ·) ' Aei
~k·(x,y) + c.c., (2)

where A is a complex amplitude, and c.c. denotes the complex conjugate.
For the case of hexagons, there is a triplet of wavevectors of the same



modulus and satisfying the condition ~k1 +~k2 = ~k3 (see Fig. 3 (a)) such that

u(x, y, ·) ' Σ3
j=1Aje

i~kj ·(x,y) + c.c., (3)

and for the case of squares, there is a pair of orthogonal wavevectors ~k1,~k2
of the same modulus (see Fig. 3 (b)) such that

u(x, y, ·) ' Σ2
j=1Aje

i~kj ·(x,y) + c.c. (4)
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Figure 3: Wavevectors for Fourier decompositions of (a) hexagon patterns
(3) in which there is a triad of wavevectors satisfying ~k1 + ~k2 = ~k3, (b)
square patterns (4), and (c) square patterns produced by a coupled pattern-
forming system, in which there are overlapping triads of wavevectors satis-
fying ~k1 + ~k2 = ~k3 and ~k2 + ~k3 = ~k4.

Mathematical analysis of (1) proceeds by first performing a linear sta-
bility analysis of the homogeneous steady-state solution u = 0. This deter-
mines the modulus kc of wavevectors that will be present in the pattern.

All Fourier modes A(t)ei
~k·(x,y) with wavevector ~k on a circle of radius kc

are linearly unstable so that their amplitudes A(t) grow in time for t ' 0.
Once the amplitudes become large enough, nonlinear functions of these
amplitudes become large enough to dampen the growth and to allow for
interactions between the modes that determine the resulting steady-state
pattern [3, 11].

While there is an abundance of examples of ripple and hexagon patterns
in laboratory and natural systems, square patterns are relatively rare. As
one example, in [10], it is shown that a cubic nonlinearity of the form
δ∇ · (|∇u|2∇u) in the equations of motion describing the surface evolution
of a crystalline material being bombarded by a broad ion beam results in
a pattern of squares. This term is unusual in that cubic nonlinearities of a
very particular form and involving higher-order derivatives are required for



a pattern of squares to be a stable steady-state solution [19]. We propose
in this paper an alternative to special cubic terms, namely the coupling of
two pattern-forming systems, that can also result in a pattern of squares.

The idea that coupled mechanisms may result in square patterns comes
from observations of patterns on plants. Section 2 describes these plant
patterns and a model for plant pattern formation proposed in [17] that
couples biochemical and biomechanical mechanisms. Although we have
suggested that this model may produce square patterns, this paper gives the
first numerical and analytical evidence that this is the case. We introduce
a more simple coupled system of Swift-Hohenberg equations in Section 3
and through numerical simulations show that square patterns form. The
results agree with linear stability analysis and weakly nonlinear analysis of
this system that is given in the Appendix.

2 Phyllotaxis and a system of coupled pattern-
forming equations

Phyllotaxis refers to the arrangement (taxis) on plants of leaves (phylla) or
their analogs such as bracts on a pine cone, seeds in a seedhead, or spines
on a cactus. We describe in Section 2.1 how a pattern of squares underlies
many of these phyllotactic patterns. In Section 2.2, we review a systems of
coupled PDEs, proposed in [17] as a model for the formation of phyllotactic
patterns on plants.

2.1 Phyllotactic planforms and the Fibonacci sequence

The square bracts on the pinecone shown in Fig. 4 (a) have been numbered
in sequence of their distance from the center of the cone. Connecting bracts
that have adjacent sides results in the eight (yellow) counterclockwise spi-
rals and thirteen (red) clockwise spirals. The numbers 8 and 13 are called
the parastichy numbers for the pattern, and the numbers 8 and 13 are not
unusual. Indeed, the spiral numbers observed on plants are typically consec-
utive members of the Fibonacci sequence {Fj} = 1, 1, 2, 3, 5, 8, 13, 21, . . . .



(a) (b)

Figure 4: (a) A pinecone with the bracts numbered in order of their distance
to the center. Also marked are eight counterclockwise spirals (in yellow) and
thirteen clockwise spirals (in red) formed by connecting adjacent bracts. (b)
A sunflower seed head with clockwise and counterclockwise spirals marked.
The spiral families are different near the outer boundary of the seed head
compared to the center.

The numbers of sprials may change even in one plant, as observed in the
sunflower seed heads of Fig. 4 (b) and Fig. 5 (a). The transition between
spiral numbers in the Fibonacci sequence can, in fact, be continuous. To
understand this, consider the function

w(r, σ) =
N∑
j=1

Â

(
r

Fj

)
cos(~kj · ~x), (5)

where ~x = (r, σ), and the amplitudes Â(ρ) = ρ2
1
5
ρ4+2

and wavevectors ~kj =

(lj(r),
Fj

r ) depend on the radius r. We give phenomenological derivations of
these forms in [16, 22] to illustrate how parastichy numbers may change con-
tinuously in spiral phyllotaxis; we do not claim that (5) is the actual func-
tion observed on plants. In [18], we numerically calculate a function Â(ρ)
from phyllotactic patterns produced by a PDE model. Figs. 5, 6 show plots
of (5) for Fj in the Fibonacci sequence. In the right panels of Fig. 6, the

function Â( r
Fj

) is plotted for various values of r, namely r1, r2 = φ
4 r1, r3 =

φ
2 r1, r4 = 3φ

4 r1, and r5 = φr1, as marked on the right panel of Fig. 6. A self-
similarity in the pattern becomes apparent: The vector of amplitudes for
r = r1 is equal to the vector of amplitudes for r = r5 = φr1 after shifting the
Fj ; that is, (..., A8 = Â(18), A13 = Â( 1

13), A21 = Â( 1
21), A34 = Â( 1

34), . . . ) =

(..., A13 = Â( 1
13), A21 = Â( 1

21), A34 = Â( 1
34), A55 = Â( 1

55), . . . ).



Figure 5: Graph of the function (5), replicating a sunflower seed head.

Figure 6: Left: Graph of the function (5). Right: Graphs of Â(ρ = r/mj)

as a function of mj for various values of r, r = r1, r2 = φ
4 r1, r3 = φ

2 r1, r4 =
3φ
4 r1, and r5 = φr1.

Also note that, at r = r1, A8 = A34 < A13 = A21, and at r = r5,
A13 = A55 < A21 = A34. Recalling that written in terms of the index
j, F6 = 8, F7 = 13, F8 = 21, F9 = 34, and F10 = 55, we also note a
corresponding relationship of wavevectors: at r = r1, ~k6 + ~k7 = ~k8, and
~k7 + ~k8 = ~k9, whereas at r = r2, ~k7 + ~k8 = ~k9, and ~k8 + ~k9 = ~k10.

The key observation is that the square patterns that are evident at
radii r = r1 and r = r5 are formed not by only two Fourier modes with



wavevectors as in Fig. 3 (b), but by overlapping triads of modes that satisfy
summation relations similar to the wavevectors of Fig. 3 (a) that produce
hexagons. As depicted in Fig. 3 (c), in order for this to occur, two of the
vectors are larger in modulus than the other two. These are the wavevectors
corresponding to the smaller amplitudes. For example, at r = r1, the
wavevectors ~k6,~k9 corresponding to the smaller amplitudes A8 = A34 are
longer than the wavevectors ~k7,~k8 corresponding to the larger amplitudes
A13 = A21.

In Section 2.2, we review a system of partial differential equation that
has been proposed as a model for the formation of phyllotactic patterns and
that incorporates biochemical and biophysical mechanisms, each of which
could produce a pattern on its own. It is the interaction of two mechanisms,
each of which may favor a different length scale, that can produce square
patterns with the features noted at r = r1 and r = r5.

2.2 A mechanistic model for phyllotactic patterns

Growth of a shoot tip or formation of flowers occurs in regions of active cell
growth and division at apical meristems. A schematic diagram of a shoot
apical meristem (SAM) is shown in Fig. 7. Small bumps called primordia
on the plant surface, which will become leaves, form not at the very center
of the SAM, but in an annular region which we call the generative region
and which is marked as Region 2 in Fig. 7.

What mechanisms lead to the formation of primordia in the generative
region? There is evidence for both biomechanical and biochemical mecha-
nisms which may interact with each other.

The idea of the biomechanical mechanism is as follows: If the outer
skin (the tunica) of the plant is growing more quickly than the inner tissue,
then a compressive stress will build up in the tunica. If that compressive
stress increases above a large enough threshold, then the tunica will be
come unstable and buckle under the stress. Biologist Paul Green proposed
in the 2000’s that primordia are the result of this buckling [6, 7, 8].

The plant hormone auxin influences cell growth, and other experiments
suggest that auxin itself may be spatially patterned in the generative re-
gion, with primordia forming where there is a higher auxin concentration
[12, 13]. Auxin is produced uniformly throughout the generative region, but
the key idea of the groups of Kuhlemeier and Meyerowitz [13, 24] is that
PIN1 proteins in cell walls transport auxin from cells with lower concen-
trations of auxin to cells with higher auxin concentrations. This produces
an instability that allows for pattern formation.



The biomechanical and biochemical mechanisms may interact in that
stress states can impact the action of PIN1 proteins. In [17], we incorpo-
rate both mechanisms into a mathematical model of three partial differ-
ential equations for the tunica surface deformation u(x, y, t), a potential
F (x, y, t) for the stresses in the tunica, and the auxin concentration differ-
ence g(x, y, t) from a mean auxin concentration.

Figure 7: A schematic of the plant shoot apical meristem (SAM). Cells form
but primorida do not form at the center of the SAM (Region 1). Region 2
is the annular generative region where primoria form. In Region 3, no new
primordia form, but there is active cell generation and differentiation.

We refer the reader to [17] for a complete description of this model,
which reads, in nondimensionalized parameters,

ζmwt + ∆2w + P∆w + κw + γw3 + C∆F − [F,w] = 0, (6a)

∆2F + ∆g − C∆w +
1

2
[w,w] = 0, (6b)

ζggt +Dg∆
2g +H∆g + dg + δg3 + κ1∇(g∇g) + κ2∇(∇g∇2g)− b∆F = 0,

(6c)

where the bracket [f, g] = fxxgyy + fyygxx − 2fxygxy.
Either the mechanical system (6a, 6b) or the auxin system (6c) may

produce an instability of the homogeneous state u = F = g = 0 to a pattern.
If both the elastic instabilities of (6a, 6b) and the auxin instability of (6c)
are active, the possibly different natural wavelengths of the patterns that
would result from either instability alone allow for differences in phyllotactic
configurations (the underlying lattice) and the surface deformation. In [17]
we analyze a variety of scenarios in which the elastic and auxin instabilities
may cooperate or compete.

A key aspect of the system (6) is that the linear terms of (6a) and
(6c) are the same as the linear terms in the Swift-Hohenberg equation



(1). Rather than numerically simulate the entire system (6), we study in
Section 3 a simplified system which is a coupled system of Swift-Hohenberg
equations.

3 Square pattern formation in coupled equations
of Swift-Hohenberg type

We consider Swift-Hohenberg equations for two fields u(x, y, t) and v(x, y, t)
coupled in both their linear and nonlinear terms:

ut + ∆2u+ 2P∆u+ u+ α1v + β1u
2 + β3uv + β5v

2 + γ1u
3 = 0

vt + ∆2v + 2H∆v + Lv + α2u+ β2v
2 + β4vu+ β6u

2 + γ2v
3 = 0. (7)

This system of equations has the uniform steady-state solution u(x, y, t) =
v(x, y, t) = 0. Linear stability analysis, given in the appendix, reveals that
in the absence of linear coupling (α1 = α2 = 0), u(x, y, t) = 0 is stable for
P ≤ Pc = 1, but unstable to Fourier modes with wavevectors of modulus
close to |k| = 1 for P > Pc = 1. Similarly, v(x, y, t) = 0 is stable for H ≤
Hc =

√
L, but unstable to Fourier modes with wavevectors of modulus close

to |k| = 4
√
L for H > Hc =

√
L. The modified conditions for instabilities

in the presence of linear coupling are given the the appendix, but the key
point is that the parameter L determines how the the wavelength of the
pattern favored by the equation for v compares to that for u. If L = 1, then
both equations would yield patterns of the same natural wavelength, but if
L is larger (smaller) than 1, then the wavelength of the pattern favored by
the equation for v will be smaller (larger) than that favored by the equation
for u.

If P = Pc+εχ and H = Hc+εχ, where χ ∼ O(1), are slightly above their
respective bifurcation thresholds (as measured by the small parameter ε),
Fourier modes with moduli close to 1 and 4

√
L grow in amplitude with time

and interact via the nonlinear terms in the equations. The wavevectors for
these modes are depicted as the two circles in Fig. 3 (c). In the Appendix,
we demonstrate a weakly nonlinear asymptotic analysis that allows us to
to derive a system of ordinary differential equations for the amplitudes of
these excited Fourier modes. This analysis begins with an Ansatz for the
form of the solution, namely

u = ε
∑N

j=1(Aje
i~kj~x +A∗

je
−i~kj~x) + ε2u1 + ε3u2 + ...

v = ε
∑N

j=1(Bje
i~kj~x +B∗

j e
−i~kj~x) + ε2v1 + ε3v2 + ... (8)



Here, N is the number of interacting modes in the Fourier expansion of the
order-ε term, Aj = Aj(T = εt), Bj = Bj(T = εt), and ε2u1 + ε3u2 + ...,
and ε2v1 + ε3v2 + ... are the correction terms. A condition for solvability
of the correction terms leads to a set of ordinary differential equations for
the time-evolution of the complex amplitudes Aj(t) and Bj(t).

The result of a numerical simulation of (7) for a choice of parame-
ter values that includes nonlinear coupling terms but not linear coupling
(α1 = α2 = 0) is shown in Fig. 8. The initial conditions are low-amplitude
white noise. We employ a Fourier spectral method with periodic boundary
conditions and a fourth-order exponential time differencing Runge-Kutta
method for the time stepping as the numerical technique, and the spatial
grid is 256× 256.

The Fourier transform of the pattern shown in Fig. 8 (a) is shown in
Fig. 8 (b). There are two circles of excited wavevectors, as marked in
Fig. 8 (c). The reason for this is the parameter choice L = 4.7 in (7), which
allows for the wavevectors of modulus 4

√
4.7 ' 1.47 to be excited by the

field v, while wavevectors of length 1 are excited by the field u (see the
linear stability analysis in the Appendix). These wavevectors interact via
nonlinear terms in the equations (7), and a discrete set of Fourier modes
with wavevectors ~k1, . . . ,~k4 such that ~k1 + ~k2 = ~k3 and ~k2 + ~k3 = ~k4, as
marked in Fig. 8 (c) (which may be compared to Fig. 3 (c)), dominates the
pattern.

~k1

~k2

~k3 ~k4

(a) (b) (c)

Figure 8: (a) gray-scale plot of u(x, y, t) at time t = 25000 resulting from
numerical simulations of the system (7). The parameter values are P = 1.1,
H = 2.2, L = 4.7, α1 = α2 = 0, β1 = −3, β2 = 3, β3 = β4 = 1, and
β5 = β6 = −5. The spatial domain is −120 ≤ x, y ≤ 120. (b,c) the
Fourier transform of the surface u(x, y, t) at time t = 25000. The domain
in wavevector ~k = (kx, ky)-space is −0.8 ≤ kx, ky ≤ 0.8. The wavevectors
~k1, . . . ,~k4 are marked in panel (c).



Motivated by the results of the numerical simulation, in the Appendix,
we carry out the weakly nonlinear asymptotic analysis, choosing in (13)
N = 4 and the overlapping triad conditions ~k1 +~k2 = ~k3 and ~k2 +~k3 = ~k4.
This results in a system of eight ordinary differential equations for the
amplitudes Aj , Bj , j = 1, . . . , 4 of the Fourier modes in (13). This is the
system (16). A numerical simulation of (16) for the parameter values of the
simulation in Fig. 8 is shown in Fig. 9. The amplitudes reach a steady state
in which A2 = A3 = B2 = B3 and A1 = A4 = B1 = B4. This is consistent
with the Fourier spectrum shown in Fig. 8 (b,c), in which the modes on the
circle of larger radius have smaller amplitude. It is also consistent with the
motivation given in Section 2.1 of patterns observed in plant phyllotaxis.
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A2(t) = A3(t) = B2(t) = B3(t)

t

Figure 9: Numerical solution of the amplitude equations (16) for the pa-
rameter values P = 1.1, H = 2.2, L = 4.7, α1 = α2 = 0, β1 = −3, β2 = 3,
β3 = β4 = 1, and β5 = β6 = −5.

A bifurcation analysis of the amplitude equations (16) would reveal
other possible solutions and their stability. Although motivated by phyl-
lotaxis in this paper, the framework of coupled pattern-forming systems
is likely to be relevant to other phenomena. This includes nanoscale pat-
tern formation induced by bombarding a binary alloy by a broad ion beam
[1, 2, 4, 23].
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Appendix: Linear and Nonlinear Analysis

In this appendix, we provide the details of the linear stability analysis and
the nonlinear analysis (the derivation of the nonlinear amplitude equations)
for the system (7).

Linear stability analysis

The system (7) has the uniform steady-state solution u = us = 0,
v = vs = 0. We will examine the stability of this solution by introducing a
small perturbation of this solution and determining if the perturbation has
linear growth or decay. Write the perturbation as

u = us + ûei
~k~xeσt

v = vs + v̂ei
~k~xeσt, (9)

where ~k = (kx, ky), and û and v̂ are constants. Inserting this Ansatz into
the linearization of (7), we obtain

σ

(
û
v̂

)
=

(
−k4 + 2Pk2 − 1 −α1

−α2 −k4 + 2Hk2 − L

)(
û
v̂

)
, (10)

where k2 = k2x + k2y. This vector equation implies that σ is an eigenvalue
of the matrix in (10). The two solutions for σ are

σ±(~k) =
σu(~k) + σv(~k)

2
±

√√√√(σu(~k)− σv(~k)

2

)2

+ α1α2, (11)

where σu(k)
.
= −k4 + 2Pk2 − 1 and σv(k)

.
= −k4 + 2Hk2 − L. We will use

σ+(~k) to denote the larger of the two eigenvalues.
Note that if v̂ = 0, we have only the equation σû = −k4û+ 2Pk2û− û

which reduces to σ = −k4 + 2Pk2 − 1 = σu(k) after dividing through by
û. Similarly, σ = σv(~k) when u = 0. The coupling terms alter these values,
and for positive α1α2, σ+(~k) is always larger than either σu(~k) or σv(~k).
Since σ is the growth rate for the system and instabilities occur when σ > 0,
the coupling terms actually help create an instability. The choice of σ+ is
non-trivial for L 6= 1 even in the case where there is no linear coupling
(α1 = α2 = 0); σ+ = σu(~k) for some values of ~k and σ+ = σv(~k) for others.
By definition, we always choose the larger of the two values.

In the case of no linear coupling (α1 = α2 = 0), we have the following:
For P < 1, σu(~k) < 0 for all ~k.



For P = 1, σu(1) = 0 and σu(~k) < 0 for all k 6= 1.
For P > 1, σu(~k) > 0 for certain values of ~k inside a finite band centered
around |k| = 1.
Similarly,
For H <

√
L, σv(~k) < 0 for all ~k.

For H =
√
L, σv(

4
√
L) and σv(~k) < 0 for all k 6= 4

√
L.

For H >
√
L, σv(~k) > 0 for certain values of ~k inside a finite band centered

around |k| = 4
√
L.

The parameters P and H thus serve as bifurcation parameters with
respective bifurcation values P = Pcr

.
= 1 and H = Hcr

.
=
√
L. In the

absence of linear coupling, the uniform steady-state solution is linearly
stable for P < Pcr and H < Hcr. Perturbations with certain wavevectors
are unstable for P > Pcr and H > Hcr. Recall that for general values of α1

and α2 (with α1α2 > 0), the modified value of σ+(~k) will be greater than
either σu or σv (say σ∗ for the general case).

We identify the set of active wavevectors, ~k, to be those for which
σ+(k) > −σ∗ for some small −σ∗ < 0. The goal is to analyze the cases
where σ+ is just above zero, when the active modes begin to interact
through the nonlinear terms in the equations.

Nonlinear Analysis

For σ+ above the critical value of σ+ = 0, there are active modes, and
these will interact through the nonlinear terms in (7). We derive evolution
equations for the amplitudes of the active modes by asymptotically expand-
ing the solutions u and v with respect to a small parameter ε measuring
how far σ+ is above 0. That is, we assume that the bifurcation parameters
are close to their respective critical values: for χ ∼ O(1),

P = Pcr + εχ = 1 + εχ

H = Hcr + εχ =
√
L+ εχ (12)

We also assume that the coefficients of the cubic terms are of order ε−1:

εγ1,2 = γ̂1,2, γ̂i ∼ O(1).

As an Ansatz for the form of the solution to (7), we assume that u and
v are an order-ε perturbation from the steady state solution plus correction
terms that are of higher order in ε:

u = ε
∑N

j=1(Aje
i~kj~x +A∗

je
−i~kj~x) + ε2u1 + ε3u2 + ...

v = ε
∑N

j=1(Bje
i~kj~x +B∗

j e
−i~kj~x) + ε2v1 + ε3v2 + ... (13)



Here, N is the number of interacting modes in the Fourier expansion of the
order-ε term, Aj = Aj(T = εt), Bj = Bj(T = εt), and ε2u1 + ε3u2 + ...,
and ε2v1 + ε3v2 + ... are the correction terms. Inserting the Ansatz into
the system (7) and collecting coefficients of powers of ε yields, at order ε
simply the expression 0 = 0, but at order ε2, we obtain the relations

(∆2+ 2Pcr∆ + 1)u1 = 2χ

N∑
j=1

Aje
i~kj~x +A∗

je
−i~kj~x −

N∑
j=1

(
Aj
dT

ei
~kj~x +

A∗
j

dT
e−i

~kj~x)

−α1

N∑
j=1

(Bje
i~kj~x +B∗

j e
−i~kj~x)− β1(

N∑
j=1

Aje
i~kj~x +A∗

je
−i~kj~x)2

−β3(
N∑
j=1

Aje
i~kj~x +A∗

je
−i~kj~x)(

N∑
j=1

Bje
i~kj~x +B∗

j e
−i~kj~x)

−β5(
N∑
j=1

Bje
i~kj~x +B∗

j e
−i~kj~x)2 − γ̂1(

N∑
j=1

Aje
i~kj~x +A∗

je
−i~kj~x)3

(∆2+ 2Hcr∆ + L)v1 = 2χ
N∑
j=1

Bje
i~kj~x +B∗

j e
−i~kj~x −

N∑
j=1

(
Bj
dT

ei
~kj~x +

B∗
j

dT
e−i

~kj~x)

−α2

N∑
j=1

(Aje
i~kj~x +A∗

je
−i~kj~x)− β2(

N∑
j=1

Bje
i~kj~x +B∗

j e
−i~kj~x)2

−β4(
N∑
j=1

Aje
i~kj~x +A∗

je
−i~kj~x)(

N∑
j=1

Bje
i~kj~x +B∗

j e
−i~kj~x)

−β6(
N∑
j=1

Aje
i~kj~x +A∗

je
−i~kj~x)2 − γ̂2(

N∑
j=1

Bje
i~kj~x +B∗

j e
−i~kj~x)3 (14)

The first of these equations has the form (∆2 + 2Pcr∆ + 1)u1 = Cei
~k~x

where Pcr = 1 and |~k| = 1 (recall that this value was found to be critical for
instabilities in the linear case with no coupling when P ≥ 0). This equation

has the form u1 = Dei
~k~x. Thus, if the coefficient of ei

~kj~x on the right-hand
side of (14) is nonzero, resonance allows the solution to grow without bound,
and our asymptotic expansion is invalid since the correction terms are no
longer small. Our solvability condition is therefore that the coefficient of

ei
~kj~x on the right-hand side of (14) be zero.

We now examine the case of (14) for N = 4, where ~k1 + ~k2 = ~k3, and



~k2 + ~k3 = ~k4. Requiring that the coefficients of the ei
~kj~x terms, j = 1 . . . 4

sum to zero results in a set of eight differential equations for the time
evolution of the amplitudes Aj and Bj , j = 1 . . . 4 which read

dA1
dT = 2χA1 − α1B1 − β1A∗

2A3 − β3(A∗
2B3 +A3B

∗
2)− β5B∗

2B3

−3γ̂1A1(2
∑4

j=1 |Aj |2 − |A1|2)
dA2
dT = 2χA2 − α1B2 − β1(A∗

1A3 +A∗
3A4)− β3(A∗

1B3 +A3B
∗
1 +A4B

∗
2 +A∗

2B4)

−β5(B∗
1B3 +B∗

3B4)− 3γ̂1A2(2
∑4

j=1 |Aj |2 − |A2|2)
dA3
dT = 2χA3 − α1B3 − β1(A1A2 +A∗

2A4)− β3(A1B2 +A2B1 +A∗
2B4 +A4B

∗
2)

−β5(B1B2 +B∗
2B4)− 3γ̂1A3(2

∑4
j=1 |Aj |2 − |A3|2)

dA4
dT = 2χA4 − α1B4 − β1A2A3 − β3(A2B3 +A3B2)− β5B2B3

−3γ̂1A4(2
∑4

j=1 |Aj |2 − |A4|2)
dB1
dT = 2χB1 − α2A1 − β2B∗

2B3 − β4(B∗
2A3 +B3A

∗
2)− β6A∗

2A3

−3γ̂2B1(2
∑4

j=1 |Bj |2 − |B1|2)
dB2
dT = 2χB2 − α2A2 − β2(B∗

1B3 +B∗
3B4)− β4(B∗

1A3 +B3A
∗
1 +B4A

∗
2 +B∗

2A4)

−β6(A∗
1A3 +A∗

3A4)− 3γ̂2B2(2
∑4

j=1 |Bj |2 − |B2|2)
dB3
dT = 2χB3 − α2A3 − β2(B1B2 +B∗

2B4)− β4(B1A2 +B2A1 +B∗
2A4 +B4A

∗
2)

−β6(A1A2 +A∗
2A4)− 3γ̂1B3(2

∑4
j=1 |Bj |2 − |B3|2)

dB4
dT = 2χB4 − α2A4 − β2B2B3 − β4(B2A3 +B3A2)− β5A2A3

−3γ̂2B4(2
∑4

j=1 |Bj |2 − |B4|2).
(15)

Now observe that for k2 = 1

σu(~k) = −k4 + 2Pk2 − 1

= −k4 + 2(1 + εχ)k2 − 1

= −k4 + 2k2 − 1 + 2εχk2

= 2εχ.

We obtain a similar relation for σv(~k). This allows us to rewrite the lin-
ear terms in the amplitude equations as 2χAi = ε−1σu(~k)Ai and 2χBi =
ε−1σv(~k)Bi.

Recalling that T = εt, we can rescale our parameters Ai and Bi as

Âi = εAi
dÂi
dt

=
dAi
dT

dT

dt
=
dAi
dT

ε

B̂i = εBi
dB̂i
dt

=
dBi
dT

dT

dt
=
dBi
dT

ε

α̂ = εα



Using these and the earlier rescaling γ̂1,2 = εγ1,2, we obtain, after multi-
plying through by ε2, the following set of differential equations (the hat
notation has been suppressed on all Ai and Bi):

dA1
dt = σu(~k)A1 − α1B1 − β1A∗

2A3 − β3(A∗
2B3 +A3B

∗
2)− β5B∗

2B3

−3γ1A1(2
∑4

j=1 |Aj |2 − |A1|2)
dA2
dt = σu(~k)A2 − α1B2 − β1(A∗

1A3 +A∗
3A4)− β3(A∗

1B3 +A3B
∗
1 +A4B

∗
2 +A∗

2B4)

−β5(B∗
1B3 +B∗

3B4)− 3γ1A2(2
∑4

j=1 |Aj |2 − |A2|2)
dA3
dt = σu(~k)A3 − α1B3 − β1(A1A2 +A∗

2A4)− β3(A1B2 +A2B1 +A∗
2B4 +A4B

∗
2)

−β5(B1B2 +B∗
2B4)− 3γ1A3(2

∑4
j=1 |Aj |2 − |A3|2)

dA4
dt = σu(~k)A4 − α1B4 − β1A2A3 − β3(A2B3 +A3B2)− β5B2B3

−3γ1A4(2
∑4

j=1 |Aj |2 − |A4|2)
dB1
dt = σv(~k)B1 − α2A1 − β2B∗

2B3 − β4(B∗
2A3 +B3A

∗
2)− β6A∗

2A3

−3γ1B1(2
∑4

j=1 |Bj |2 − |B1|2)
dB2
dt = σv(~k)B2 − α2A2 − β2(B∗

1B3 +B∗
3B4)− β4(B∗

1A3 +B3A
∗
1 +B4A

∗
2 +B∗

2A4)

−β6(A∗
1A3 +A∗

3A4)− 3γ1B2(2
∑4

j=1 |Bj |2 − |B2|2)
dB3
dt = σv(~k)B3 − α2A3 − β2(B1B2 +B∗

2B4)− β4(B1A2 +B2A1 +B∗
2A4 +B4A

∗
2)

−β6(A1A2 +A∗
2A4)− 3γ1B3(2

∑4
j=1 |Bj |2 − |B3|2)

dB4
dt = σv(~k)B4 − α2A4 − β2B2B3 − β4(B2A3 +B3A2)− β6A2A3

−3γ1B4(2
∑4

j=1 |Bj |2 − |B4|2).
(16)
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