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Abstract. It is our point of view that
familiar interval arithmetic defined by
A*B={a * b aéA, bezB}’*e{"’r_:)‘qu} is
inefficient in certain respects. For
instance, it is not in a position to
produce exact representations of sets of
the form {f(X,¥seess2):XEX, Y €Yye0e0, 265}
even for simple functions £ of one
variable. We make use of another interval
arithmetic which is very convenient for
computer computations and for comstruction
of interval algorithms.As an example we
consider a method for the comstruction of
interval expressions for sets of the form
{f(x):xe[x1,x2]}, where £ is an elementary
function.

1eIntroduction

Interval arithmetic is becoming
rapidly popular as a perspecfive weapon
against round-off errors. By interval
arithmetic we mean an algebraic system
consisting of the set IR of all closed
intervals on the real line R together with
some binary operations on IR. The idea of
this mathematical tool is as follows,
Instead of the usual numerical elgorithms
for solving certain mathematical problem
we use interval algorithms based upon
interval arithmetic. Such interval
algorithms are designed to produce as final
results intervals (instead of numbers)which
include the exact solution of the original
problem. This idea leads to the following
two requirements with respect to interval
algorithms: 1) the interval algorithm should
be reliable in the sense that such an
inclusion of the exact sclution must indeed
take place in an arbitrary situation; 2)the
interval algorithm should be good in the
sensethat the resulting interval bounds
must be as sharp as possible.

There are still some difficulties
related to the realization of these two
requirements which prevent the wide
utilization of interval arithmetic and
interval algorithms. The firat requirement
creates difficulties with the implementation
of interval erithmetic on computers since
the widly-available hardware and software
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~the topic we want to discuss in some detail.

systems do not provide the necessary
downwardly (or upwardly) directed roundings
The second requirement leads, in our opi-
nion, to the need of a sufficiently rich
interval arithmetic structure, and this is

FPamiliar interval arithmetic (3] is
quite inefficient in certain situations.
Thus this arithmetic is not able to produce
exact interval representations of sets of
the form {f(x,y,...):xé[x1,x2]=X,y €Yjs000

even for simple monotonic functions of one
variable (consider the simple example
{2x-x2:xe:x}, where X =[x, ,x,1¢{0,1])e In
this paper we present an in%erval arithme-
tic, which is very simple and more efficient
than the familiar one in certain such
situations.

2.An interval arithmetic

We shell denote the elements of IR,
that is the compact intervals on R, by
capital Roman letters 4,B,C,... . Real
numbers will be denoted by a,b,c,s.. oOr

by

For the end-points of an interval A
we use the following two types of notations:
i) 8, and a, are the end-points of A such

that
ii) a, and a, are the end-points of A such
that lar]<15avl.

Remark. Note that the numbers B

aa1 s‘az;

and a,

are not defined in the situation when A is
a symmetric interval of the form
A={=a, a], a>0.

By « vp or [« VP] we shall mean an
interval A with end-points « and @8 . This
notation is very useful in situations when
o« and £ are some variable quantities for
which it is not known whether « £ or
x >f takes place, so that we are not in
a position to decide which one of the
equalities A =la«.p] or A=[p,«1 should
be written. This useful operation "wv",
called join, can be extended for intervals
A,B as follows: AvB= [min{a1,b1},max{32,b§1,




The width of A is denoted by w(A) =
ay=a,. The number |Al=max ﬂa11, iazl} is

is called the absolute value of A.

We are now in position to introduce
the following interval arithmetic on IR;

A+B :[a1+b1 Vo 8ytbsy]
A-B =[a1---b1 V'a2-b2],
AvB = [ af,,‘bm VvV a,byl s
A/B =[ar/bm‘v ay/b, 1.

(1)

Consider these
detail. The sum of A
with end-points a1~vb1

operations in some
and B is the interval
and az—bZ, that is

the interval [31—b1, agmbgl. In the other

three formulas we can not say which end-
point is the left one and which is the
right one for arbitrary A and B. Thus, the
difference A~B is the interval with end-
points a1-b1 and azmbg, that is, A-E =

[a1-b1, a2-b2] in the situation when w(A)
2 w(B) and A-B=[a,~b,, a,~b;] in the
situation w(A)< w(B).

The product AB and the quotient A/B
of two intervals are not defined in the
situation when some of the intervals
involved are symmetric, since then the
numbers 8u5b.,8,, b, are not defined.

However, we shall extend definition (1)
for the case when the interval A is a
degenerate interval of zero width, w(4) =0,
and B is a gsymmetric interval. Since the
set of degenerate intervels A=, x> ig
isomorphic to the reals we shall make no
distinction between such intervals and the
real numbers, writing thus A4 =[x, «} =%, We
now add to (1) the following definition:
if B is a symmetric interval, that is, b1=
-b2, then

o B= [o(b1 Vab, 1,

2 ")
A /B= [oz/b1 V&/b,] .

Obviously the interval A+(-=B) is not
equal to A-B, in general, which means that
our arithmetic is not linear. Nevertheless
the interval arithmetic (TA) defined by
(1)=(1') possesses a simple algebraic
structure, which has been already studied
in some detail.

In addition, we introduce several
other convenient notations. The interval
(-1)A=[-1,-1]A=[-a2,~a1] will be briefly

denoted by -A. Purther, we set: ASB=A+(=B)
=[a1—b2,a2—b1], A@B:A-(—B):[a1+béva2+b1],
A@B=A(1/B)=[&(ﬁy/bvv av/b(q-l, A®B=A/(1/B)=
[Bub,V a,b,1; A%=1, AP=p.4.,...A.

v voe® ’ n times

275

3+A comparisson with familiar :
interval arithmetic wd

This section might be of some intereast
only for readers acquainted with well-known
interval interval arithmetic [3]s We shall
make now a comparisson between our interval
arithmetic (IA) defined by (1)-(1') and the
familiar interval arithmetio (FIA) defined
by A*B:{a*b:aeA,beB), *€{+,-,%,1}, that is:

A+B={a+b: ae4, beB},
A-B={a~b: aeA, beB)
AB= {ab: ach, bep), (FIA)
A/B={a/b: a¢eh, beB}.
The first operation in (FIA) is the

seme as the first operation in (IA). The
second operation in (FIA) is g composite
operation, A-B=A+(-B), and thus is of no
interest. The third operation in (PFIA):

AB={ab: a€d, beB} (FIA3)

coincides with the thirg operation in (IA)
in the situation when neither A nor B
contain zero. The operation (FIA3) possesses
a serious insufficiency: it is rather
complicated when presented in terms of the
end~points of the operands (such presenta-
tion can be found in [3], P+12). We note
that end-point bresentations are important
for the calculations. The third operation
in (IA) has the advantage of being simply
representable by means of end-points and,
therefore more efficient for computation
(especially via computers). The only
advantage of (FIA3) is that it gives a
simple expression for the set {ab: acA4,
be B} for all possible A and B. In (IA) it
is true that AB={ab: a¢A,beB} if A and B
does not contain zero. The general formula,
valid for arbitrary A,B,is a bit more
complicated. However, in practice we usu-~
ally work with small intervals and the
situation when an interval contains zero
is comparatively rare. This says that the
mentioned advantage of (FIA3) is minor.
There are many other cases when the third
operation in (IA) is more convenient.

With regard to the fourth operation in
(FIA) it should be noted that in (FIA) we
have A/B=A(1/B), showing that if 1 /B is
defined then A/B is a composite operation
(multiplication of A by 1/B). The opera-
tion A/B in (FIA) is almost the same as
the composite operation A®B=A(1/B) in (I4).
Indeed, in (IA) it is true that {a/b:a c4,
b € B}=A@B in the situation A5 0,B5 0.

Finally we note that (FIA) is baged
upon only two "and a half" operations:A+B,
AB and 1/B, whereas (IA) is based on four
independent operations. The power of these
four operations is demonstrated in the next
section. At any case the structure of (I4)
is richer then the structure of (FIA) whic@
will become clear from the presented ap
cations. As an application we shall
der in section 6 some interval algon
for computation of sets of the fom

"




{f(x):x€X} where £ is an elementary func-
tion.We shall first consider some basic
theorems which allow us +to obtain exact
intervel representations of sets of the
form {f(x)xg(x):xeX}, *xef{+,~,x,:}, by the
assumption that the sets {f(xs:x'EX} and
{g(x):xe X} are known.

4.Construction of interval expressions
for ranges of monotone functions

Assume that f is continuous and mono-
tone (c.m.) on D€ IR. For any X=[x,,X,]1CD
the set {f(x):xeX} is an intervel  ®hich
is easy to compute: {f(x):x<5X}=[f(x1)Vf(§9k

this interval will be further denoted by
F(X). We thus obtain for every c.m. on D
function £ an interval function PP on inter-
val argument, that is a mapping F:D —IR.

two functions f,g which are
cems on D. We shall distinguish between the
following two situationse: i) both functions
f,g are monotone increasing on D or both
are monotone decreasing on D; we shall then
sgy that f and g are equimonotone (e.m.) on
D; ii) one of the functions f,g is monotone
increasing on D and the other is monotone
decreasing on D; in this case we say that
and § are differently monotone on D (d.m.
on D).

Consider

Our applications given in section 6
are based on the following propositions[2]:

Proposition 1. The functions f,g and f+g
are c.m. on D. Then for every interval X<CD
F(X)+G(X),if £ and g are
. €.m. on D,
F{X)®G(X),if £ and g are
dems on D,

{f(x)+g(x):xexl;{

Proposition 2. The functions f,g and f-g
are c.m. on D. Then'for every interval XcCD
F(X)=G(X),if f and g are
- . _ ‘ e.m., on D,
() 3(X)'X‘X}‘[F(X.>ec(x),j.f ? and g are
deme on D,

Proposition 3. The functions f and g are
such that |f],|g| eand £fg are c.m. on D.
Then for every XCD
F(X)G6(X), if f and g
. _ ] are e.mes on D
ftxex) k)= 1p(ni9e(x), if © end g

are deme on D.

Proposition 4. The functions f and g are
such that [f]|,|g| and f/g are c.m. on D.

Then for every X )
P(X)/6(X), if ¢

H ar «llle D,
{f(x)/g(x).xexg=[F(X):G(X)’xig efm agg :

are d.m. on D.

Propositions 1-4 can be used for defi-
nition of our interval operations, analogous
to the definition Xx¥={x+xy:xeX,ye¢¥} in (FIA
Indeed, consider the following definition of
addition of intervals: given two intervals
X,Y, choose an interval T and iwo continuous
and e.m. on T functions x=x(t), y=y(t), such

and g
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that x(T)=X, y(T)=Y, that is, {x(t):teT}
=X, {y(t):t€¢T}) =Y. Then we have X+Y =
{x(t)+y(t):t e T},

Subtraction of X,Y can be defined
analogously as follows. Take an interval
T and two continuous and e.m. on T func-
tions x=x(t) and y=y(t), such that x(t)-
y(t) is monotone on T, and x(T)=X,y(T)=Y.
Then we have X-Y¥={x(t)-y(t): te T},

Similarly, the other operations in

(IA) can be defined.

5.Interval series
The concept of an interval series
can be introduced as follows.

Definition. If we are given an interval
sequence {An};L1 then the interval
- 9
sequence {Sn};=1 , with S1=A1, S
s An+ﬂ is called an intervael
+A *tp ot

A1_A2uA3- ses @

When Sn converges to the interval S
|s1 ) we say
..+ converges and

n+1= °n

series

(in the sense of the norm
that the series A1tA +

its sum is S. ¢

Examples:
1+hpp2/21 403731008 0000 0y
B-B°/2+B°/3-B%/4+...;
16c2/210c%/010c8 /620, .. .

It will be shown below that the sums
of the above series are corresspondingly
equal to the intervals

{eX:x €A}, for A €[-1,01,
{In(1+x):x€ B}, for Bcl0,1], and
{cos x:x€C}, for C<Cl0O, n/43 .

Note that the interval arithmetic
operation Sh between the n-th partial sum

Sn and the term An+1 can be either + or

=y O €{+,~} (and hence O € {+,=1®,01 Yo

Thus an interval series 1s determined by

means of the sequences of terms {An}£;1
} e

=+

n’n=1 ,%n~ -
In what follows we shall obtain in-

terval series expressions for sets of the

form {Zr:::1 anxn: x€XY . We note first

that the equality x5 xexy = X2k+1k=qgw
holds true for any X € IR, whereas the

equality {x°%:x eXt = x°¥ ig true if X30.

and the sequence of signs {6

6.Interval computation of
elementary functions

Consider the interval exponential
function ex={exzx:ex}. It is well-known




that for X >0 we have ]
eXe14x/114%2/214%3 /304 L. (2)

Remark. The practicel significans of expres-
sions like (2) is straightforward. I we
truncate them up to the n-th summand end

add the corresponding truncation error in-
terval term, then we obtain a formula which
can be used for the numerical computeation

of the corresponding function £ (in this
case f(x)=eX) with an a posteriori control
over the total computational error irn f(x),
that is: inherent error in the argument +
truncation error + roundoff error (providing
that the necessary directed roundings are
performed)., Such formulas provide us with
simple algorithms for the computation of

the elementary functions for interval soft-
ware (cf.[5]). This remark applies for any
of the interval series expressions below.

Formula (2) is not valid for X< O.
lloreover, as is shown in [4], it does not
produce sharp bounds for the value of exp X
and therefore is of little use for the
practical computation of exp x for x < 0.

We shall next obtein exact interval
expressions for exp X for nonpositive in-
tervals X £0. First, we shall give a formu~
la for -1 <X <1, We note the fact that the
partial sums Z;lo /nt are monotone increa-
sing or decreasing on [-1,0] according to
whether n is odd or even. Applying consecu-
tively Proposition 1 we obtain:

eX=1+x@x2/2:+x3/3zem4/4x+..., -14%X<0.
We shall now obtain a formula for eX
for arbitrary X< 0. T¢ this end we rear-

range the terms in the Taylor series for
exp x as follows:

x=x+1+x3/3!+x2/2!+x5/5£+x4/4!+x7/7:+...,
and notice that all partisl sums in tle
above series are monotone increassing func-

tions on (- ,01. Then, by means of Propo-
sition 1 we obtain for X £0:

eX=X@1+X3/32@K2/2!+X5/5!@M4/4!+X77!$"..(3)

Remark. Formulas (2) and (3) can be used
for the computation of exp X for any X.
Indeed, if X=[x9,%x2190 we set X=X'VX" =

[x1,0]v[0,x2] and then have exp X =(exp X')
V (exp X") which can be computed by means
of (2) and (3). Similarly, any other formula

of the form F(X)={G(X),X <a;H(x),X2a can
be used for the computation of F(X) for X3a.

Consider now the logarithmic function
In(1+x). For xe(~1,1] we have In(1+x) =x~

x2/2+x3/3—x4/4+... - Using the fact that all
rartial sums are monotone decreasing on
(-1,1] we obtain for the range {1n(1+x):xeX}
=ln(14X):

ln(1+x)={'x-x2/2+x3/3nx4/4+..., for 0<¢X <1,

X6X2/2+%3/36x%/4. .., for ~1¢X<0.
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Let us present some interval expres-
sions for the sine and cosine functions.
The argument X can be reduced suitably in
advance; it is sufficient to obtain inter-
val formulas that are valid for 0<X<m/4.

Consider the cosine function COS X =
Zr o(=1%x?X/(21) 1. Woticing that a1l par-

tial sums are monotone decreasing functions
on [0,V6] and using Propositions 1 and 2,
we obtain for the range cos X =icos x:x€X}:

cos X = 16X°/210%4/416X6/61aX8/81=. (4)

for X [0,V6] . Since V6> %/4 formula (4)
can be used for the computation of cos x
for any X.

The fact that the functions 2 B.,(-1)¥

x°X/(2x)1 are monotone increasing on[-V6,0]
for every n leads us to the conclusion
that (4) holds true for -V6<X<0 as well.

Consider now the computation of sin X
={sin x:x€¢X} . Using the fact, that the
partial sums in the Taylor expansion of
sin x are monotone increasing functions on
(-12,V2] for every fized number n of the
summands,we obtain
sin X = X~X3/314%X°/51-%7/714x9/91. ..
for -V2<Xx<V2 .

Using similar arguments for (1+X)%=
{(1+x)%:x €X} , when 0<a<1 and -1<€ X<1,

we obtain
1+ax-9igillxz+...,

1+w@5%?15?+“.,~1éxso.

0<X <1
(14+X)%= ’

For similar considerations for func—
tions of many variables see [1].
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