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Abstract: This paper is devoted to the software implementation of two mathematical
methods which are often used in biological applications: interpolation and curve �tting
in the presence of uncertainties in the input data given in the form of intervals. The
methods involve model functions linear in their parameters and are formulated by
means of simple expressions in terms of interval arithmetic allowing the computation
of veri�ed bounds for the interpolating/approximating functions. The methods are
demonstrated for certain classes of nonlinear modelling functions �nding applications in
biology. A case study involving enzyme-catalysed reaction is considered. The numerical
results are performed in the computer algebra system Mathematica, which supports
interval-arithmetic computations.
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1 Introduction

We are witnessing a rapid involvement of mathematics in biological investiga-
tions. A characteristic feature of this involvement, which stimulates the de-
velopment of speci�c mathematical tools, is the presence of uncertainties in
the input data. For biological problems involving both short and uncertain
records, it seems that several deterministic mathematical theories and numer-
ical approaches will play major role in the near future: di�erential inclusions,
set-valued analysis, viability analysis, interval analysis and numerical methods
with result veri�cation. These tools are now quickly penetrating into biolog-
ical applications [Belforte et al. 1983], [Fedra et al. 1981], [Gomeni et al. 1986],
[Lahanier et al. 1987], [Norton 1986], [Norton 1987], [Walter and Lahanier 1988].
For the successful application of these new mathematical tools and methodolo-
gies we need suitable supporting programming tools. Special languages, called
SC-languages, have been developed which support the design of numerical meth-
ods with veri�cation. Two computer algebra systems are major competitors
for the provision of suitable support for quali�ed mathematical applications:
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Maple [Char et al. 1986] and Mathematica [Wolfram 1991]. The development of
special mathematical tools appropriate for biological applications in �elds like
mathematical ecology, mathematical immunology, mathematical population ge-
netics and mathematical epidemiology is in progress, (see e. g. [Murray 1989],
[Ewens 1979], [Hallam and Levin 1989]).

A typical problem which often arises in biological applications is interpolation
involving interval data. One of the simplest problems is interpolation under the
assumption that the values for the dependent variable y contain uncertainties,
that is, instead of numerical values for y we are given intervals Y [Crane 1975],
[Milanese 1989], [Markov 1991]. In a setting involving generalized linear mod-
elling functions often used in biological applications [Brown and Rothery 1994],
the problem can be formulated in the following way [Markov and Popova 1996],
[Markov et al. 1993]:

Given:
i) a class Lm(D;') of generalized polynomials de�ned for � 2 D � Rk:

� (�; �) =

mX
i=1

�i'i (�) = ' (�)
>
�; (1)

where '(�) = ('1(�); : : : ; 'm(�))
>
is a Chebyshev system of m continuous func-

tions on D and � = (�1; : : : ; �m)
>
2 Rm is an unknown vector (for example 'i

can be the standard algebraic monomials �i�1);
ii) an input data xj 2 D, j 2 J = f1; : : : ; ng, n � m, such that xi 6= xj , i 6= j,

and n interval measurements Yj = [y�j ; y
+
j ]; j 2 J . Let x = (x1; : : : ; xn)

> 2

Rn�k and Y = (Y1; : : : ; Yn)
> 2 IRn , where IRn is the set of n-dimensional

interval vectors.
Problem 1 (Interval interpolation): Assume that �(�;xj) 2 Yj ; j 2 J . If

� is of the class (1), then these conditions can be written as '(xj)
>� 2 Yj ; j 2

J , or in matrix notations: �(x)� 2 Y , where �(x) is the full rank matrix

�(x) =

0
B@

'1(x1) : : : 'm(x1)
...

. . .
...

'1(xn)) : : : 'm(xn)

1
CA :

For a �xed � 2 D , we let

�(x; Y ; �) = f�(�; �) j �(�;xj) 2 Yj ; j 2 Jg

=
n
' (�)

>
� j �(x)� 2 Y

o
: (2)

Formula (2) de�nes an interval-valued function �(x; Y ; �) on D, which presents
the envelope of the set of functions � of the form (1) interpolating the vertical
segments (xj ; Yj) ; j 2 J , whenever this set is not empty. We need to compute
numerically the interval function �(x; Y ; �) in D.

Problem 2 (Interval curve �tting): In the familiar situation when the
measurements y are assumed to be real numbers, the curve �tting problem in-
volves a matrix operatorH : Rn�k ! Rm�n, which depends on x but not on Y ,
i. e. we have H = H(x). Denote by � an operator (called estimator) which maps
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y 2 Rn via H linearly into the parameter space Rm, i. e. � = �(y) = Hy. Con-
sider now the situation where intervals Y are given instead of numerical values
y. For a �xed � 2 D, the "estimates uncertainty set" [Milanese 1989] is

��(x; Y ; �) = f'(�)>� ; � = Hy j y 2 Y g: (3)

The problem is to present and compute the interval-valued function (3) in a given
domain for the variable �. The function ��(x; Y ; �) is the enveloping function of
the set of solutions of the curve �tting problems (generated by the operator �)
corresponding to all possible data (x; y) whenever y 2 Rn varies in the interval
vector Y 2 IRn.

Problems 1 and 2 are related to the problems of �nding (or enclosing) the
corresponding parameter sets [Milanese 1989]. For example, the parameter set
corresponding to Problem 1 is a convex polytope

� = f� 2 Rm j �(x)� 2 Y g : (4)

Interval Arithmetic: For the presentation of the interval-valued solution
functions (2), (3) we shall use two interval arithmetic operations [Moore 1966].
By IR we denote the set of all intervals Y of the form Y = [y�; y+] = fy j y� �
y � y+g, where y�; y+ 2 R. For our purposes we shall need addition of two
intervals X;Y 2 IR given by X + Y = [x� + y�; x+ + y+] and multiplication of
an interval X by a real � 2 R which can be expressed by:

�X = [�x�sgn(�); �xsgn(�)] =

�
[�x�; �x+]; � �0;
[�x+; �x�]; � <0;

where x�� = x+, x�+ = x�.
Given a real valued vector � = (�1; : : : ; �n) and an interval valued vector

Y = (Y1; : : : ; Yn)
>, we can present the set f�y j y 2 Y g by

�1Y1 + �2Y2 + : : : + �nYn = �Y : (5)

The interval-arithmetic expression �Y for the set f�y j y 2 Y g is short and
convenient; to see this the reader may compare it to conventional expressions for
the end-points of the interval f�y j y 2 Y g. In what follows we shall make use of
the interval-arithmetic expression (5) to present and compute the interval-valued
solution functions (2) and (3).

2 Methods for Interpolation and Fitting Under Interval Data

In this section we brie
y present some simple interval-arithmetic expressions for
the solutions of Problems 1 and 2.

Interval Interpolation. For m = n the matrix ��1(x) is well de�ned and
we have for (2)

�(x; Y ; �) =
�
'(�)>��1(x)

�
Y: (6)

For m < n the interval function �(x; Y ; �) can be computed at a �xed point
� 2 D, e. g. by one of the following two methods:
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A. Intersecting the values at � of all interval functions of the type (6), i. e.

�(x; Y ; �) =
\
Q�J

�(xQ; Y Q; �) =
\
Q�J

�
'(�)>��1(xQ)

�
Y Q;

whereQ = fq(i)gmi=1 is a subset of J of m elements and (xQ; Y Q) are data (x; Y )

reduced to Q, e. g. xQ =
�
xq(1); : : : ; xq(m)

�>
and Y Q =

�
Yq(1); : : : ; Yq(m)

�>
. If

the intersection is empty then Problem 1 has no solution.
B. Solving two constrained linear optimization problems and presenting the

solution �(x; Y ; �) at � 2 D in the form�
min

�(x)�2Y

n
' (�)

>
�
o
; max
�(x)�2Y

n
' (�)

>
�
o�

:

The case k = 1. For k = 1 the input data x is a vector of real components
x = (x1; : : : ; xn) 2 Rn. Assume that the components of x belong to an interval
X = [x�; x+], and x0 = x� � x1 < x2 < : : : < xn � x+ = xn+1; in partic-
ular, we may have x0 = x� = �1, xn+1 = x+ = 1. The following theorem
characterizes �(x; Y ; �) in X.

Proposition 1. [Markov et al. 1993], [Markov and Popova 1996]. Let the set of
functions �(�; �) 2 Lm(X;') interpolating (x; Y ) be not empty and let �(x; Y ; �)
be the envelope (2) of this set. Then in every (xi; xi+1), i = 0; 1; : : : ; n, the upper
and lower boundary functions of � (x; Y ; �) are functions from Lm(X;').

Proposition 1 states that for every i there exist two parameters ��i ; �
+
i 2 Rm

generating the envelope in the whole interval (xi; xi+1); that is, for � 2 (xi; xi+1)

�� (x; Y ; �) = �(��i ; �) = '(�)>��i ;

�+ (x; Y ; �) = �(�+i ; �) = '(�)>�+i :

Numerical algorithm (for k = 1). Compute �(x; Y ; �) at some point �i
from the open interval (xi; xi+1), e. g. �i = (xi+1 + xi)=2, by computing at �i
the values of the boundary functions ��i and �+i using either method A or B.

Proposition 1 states that there are two unique generalized polynomials ��i =

�(��i ; �) and �
+
i = �(�+i ; �) which are the boundary functions of �(x; Y ; �) in the

interval [xi; xi+1]. Using methodA we obtain twom-dimensional subsetsQ�i and

Q+
i of J and two m-dimensional sets of binary variables A� = (��

q(1)
; :::; ��

q(m)
)

and A+ = (�+
q(1)

; :::; �+
q(m)

), ��
q(i)

, �+
q(i)

2 f+;�g, i = 1; :::; n, such that for

� 2 [xi; xi+1]:

�� (x; Y ; �) =
�
'(�)>��1(xQ

�

i )
�
(Y Q

�

i )�
�

q(i) ;

�+ (x; Y ; �) =
�
'(�)>��1(xQ

+
i )
�
(Y Q

+
i )�

+
q(i) :

(Note that the pairs (Q�i ;A
�
i ), (Q

+
i ;A

+
i ) may not be unique, and any such pair

can be used). Fig. 1{3 show solutions of problem 1 for di�erent values ofm and n
(k = 1 for all examples). Fig. 1 shows the graphs of two interval-valued functions
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interpolating n = 9 vertical segments placed symmetrically with respect to the
origin using the basic functions 'i = �i�1: the outer interval function is the
solution involving m = 9 parameters and the inner function involves m = 7
parameters. Individual boundary functions are shown in Fig. 4 for n = 7;m = 2.

The above algorithm has been programmed in Mathematica Version 2.2,
which supports interval arithmetic [Keiper 1993]. The following program pro-
duces the outer solution presented in Fig. 1:

n = 9;m = 9;
Do[x[i] = �1 + (2 � (i� 1))=(n� 1); fi; ng];
Do[y[i] = Interval[f�2^(�1); 1=2g]; fi; ng];
Do[fi[i; t�] = t^(i� 1); fi;mg];
sausage[ksi�; set�] := (fi[#1; ksi]&)=@Range[m]:

Inverse[Table[fi[i; x[set[[j]]]]; fj;mg; fi;mg]]:
(z[#1]&)Range[m]=:Table[z[i]� > y[set[[i]]]; fi;mg];

sampleDraw := Module[fsegmentg; segment[x�; y�] :=
Line[ffx;Min[y]g; fx;Max[y]gg];

Graphics[f(segment[x[#1]; y[#1]]&)=@Range[n]g]];
iplot[y�; r�; opt��] :=

P lot[fMin[y];Max[y]g; r; AspectRatio� > 1; opt];
Show[sampleDraw; iplot[sausage[ksi;Range[n]]; fksi;�1:03; 1:03g;

DisplayFunction� > Identity];
DispalyFunction :> DispalayFunction;
Frame� > True;Axes� > True;
P lotRange� > f�6; 6g;
F rameLabel� > f"n = 9;m = 9"g];

Alternatively, by using method B the parameters ��i and �+i , i 2 J , can be
found (see Proposition 1). Using these parameters we can �nd both the interval-
valued function (2) and the corresponding parameter set (see Fig. 4).

Interval Curve Fitting. Using (5) we can present the interval solution (3)
explicitly by

��(x; Y ; �) = f'(�)>� ; � = Hy j y 2 Y g

= f'(�)> (Hy) j y 2 Y g

= f
�
'(�)>H

�
y j y 2 Y g

= ('(�)>H)Y = ��(�)Y : (7)

The interval{valued function (7) gives an explicit expression for the exact bounds
for the solution set.

Special case: Multiple linear regression. Let � = (1; �1; : : : ; �m�1) and
assume 'i(�) = �i, i = 0; : : : ;m�1, so that �(�; �) = '(�)>� = �0+�1�1+ : : :+
�m�1�m�1 = ��. Multiple linear regression involves a matrix H = (X>X)�1X>

with X of the form

X =

 
1 x11 : : : x1m�1

: : :
1 xn1 : : : xnm�1

!
:
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Substituting in (7) we have

��(x; Y ; �) = ��(�)Y = (�H)Y =
�
�(X>X)�1X>

�
Y:

3 A Case Study Involving Biological Data

A Mathematica package for interpolation and curve �tting involving interval
data for the dependent variables has been developed. The package is suitable
for mathematical modelling in biology whenever generalized linear modelling
functions are used. Such models like the logistic-Normal model, the rectangular
hyperbola-Normal model etc. play an important role in biomathematical appli-
cations [Brown and Rothery 1994]. The package o�ers the possibility to compute
and visualize the interval solution functions (2), (3) as well as the corresponding
parameter sets (see Fig. 1{4). One can also easily observe individual solution
functions (Fig. 2), or to compare di�erent solution functions (see Fig 1.). If a
solution set does not exist for a particular interpolation problem, then a variety
of classes of modeling functions (e. g. involving di�erent number of parameters
or various basic functions) can be used.

The numerical examples presented in Fig. 1{4 are related to interval interpo-
lation (Problem 1) and are self-explanatory. Figures 1{3 visualize interval solu-
tion functions (2) for the presented interval data. Fig. 4 visualizes the parameter
set (4) corresponding to the solution from Fig. 3.

In case that a satisfactory interpolation solution cannot be found at all, if
interested, the user can always �nd an interval curve �tting solution. This is
illustrated in Fig. 9, where the interval segments are situated in a way that
suggests the use of quadratic polynomial functions. The envelopes (8) of the sets
of quadratic least-square �tting polynomials are computed.

Case study: an enzyme-catalysed reaction. Fig. 5{8 are devoted to an
enzyme catalysed reaction discussed in [Brown and Rothery 1994] (see pp. 347,
425). The measured data for this example are taken from [Kuhn 1923]; s are
values of the substrate concentrations and v are values for the velocity of the
reaction at s:

s 0.1970 0.1385 0.0678 0.0417 0.0272 0.0145 0.0098 0.0082

v 21.5 21.0 19.0 16.5 14.5 11.0 8.5 7.0

The model �tted by least-squares is v = as=(b + s); some computed values
for the parameters are a = 23:6, b = 0:0175. We shall assume that the concen-
trations s are exact and the velocities v are uncertain but bounded in certain
intervals V . We shall then ask how precise are the computed parameters a, b
and how does the uncertainty re
ect on the computed model. It has been as-
sumed that the data for the velocity v of the enzyme-catalysed reaction has
been bounded by a magnitude of 0.5; e. g. V1 = (21:0; 22:0), V2 = (20:5; 21:5),
.... , V8 = (6:5; 7:5) | these values are taken for illustration; in reality the
interval values Vi may be found experimentally. The corresponding interval
segments (s; V ) are visualized in Fig. 8. We consider the problem of �nding
the envelope of the set of rectangular hyperbolas of the form v = as=(b + s)
(with a, b unknown), interpolating the segments (si; Vi). This problem has been
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solved by �rst linearizing the interval data by expressing s=v as a linear func-
tion of s (Hanes-Woolf plot) and �nding the set of linear functions interpo-
lating the transformed segments (si; si=Vi) whose envelope is shown in Fig. 5.
The vertices of the corresponding parameter set are shown on Fig. 6 | these
vertices are the four points: (0:000739532; 0:0431465), (0:000751904; 0:0416378),
(0:000759625; 0:0428501), (0:000779215; 0:0414991). These points are then con-
verted back to the parameters (a; b) to �nd the bounding interpolating hyperbo-
las of the original problem of the form v = as=(b+ s). We obtain the following
four points (a; b): (23.1768, 0.01714), (24.0167, 0.0180582), (23.3371, 0.0177275),
(24.0969, 0.0187767), (see Fig. 7), which are the vertices of the parameter set
for (a; b). It can be shown that this set is a quadrilateral and therefore uniquely
determined by the four vertices. Fig. 8 shows the enveloping interval function
for the interpolating hyperbolic functions. This example shows that for the in-
terval interpolation problem, the intermediate linearization approach causes no
additional problems, as is the case when curve �tting is performed. Recall that
the curve-�tted solution of the original problem does not retain the type of �t-
ting estimator (e. g. least square estimator), of the corresponding intermediate
linearized problem, which implies the use of more sophisticated methods, like
weighted least-squares.

4 Conclusions

The results and programing tools described above can be used by experimen-
tal scientists, for checking hypotheses with respect to the type of the modeling
functions. Our method for interpolation of interval data is simple and can be
very useful for applications. The case study discussed above shows that the
method can be applied not only for linear models but also for certain classes
of nonlinear models. It is an open problem to specify such nonlinear problems
and to formulate corresponding numerical tools for them. Mathematica can deal
with interval-arithmetic expressions and is a suitable environment for the de-
velopment of such packages. Its extensive graphics capabilities allow the user to
generate two- and three-dimensional graphics, which can be useful in the process
of mathematical modelling.
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Figure 1: n = 9; m = 7 and m = 9
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Figure 2: n = 7, m = 2
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Figure 3: n = 7, m = 1
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Figure 4: The parameter set for the problem of Fig. 3
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Figure 5: Linearized interval data, resp. interval solution (m = 2, n = 8)
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Figure 6: The parameter set of the linearised problem
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Figure 7: The parameter set for the original problem
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Figure 8: Interval data (si; Vi) for an enzyme-catalysed reaction and the �nal
interval solution function

0 1 2 3 4 5

1

1.05

1.1

1.15

1.2

1.25

1.3

Figure 9: Least square interval regression using quadratic functions
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